Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(7): 2100-2112, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069501

RESUMEN

Downy mildew of grapevine (Vitis vinifera), caused by the oomycete Plasmopara viticola, is an important disease that is present in cultivation areas worldwide, and using resistant varieties provides an environmentally friendly alternative to fungicides. DOWNY MILDEW RESISTANT 6 (DMR6) from Arabidopsis is a negative regulator of plant immunity and its loss of function confers resistance to downy mildew. In grapevine, DMR6 is present in two copies, named VvDMR6-1 and VvDMR6-2. Here, we describe the editing of VvDMR6-1 in embryogenic calli using CRISPR/Cas9 and the regeneration of the edited plants. All edited plants were found to be biallelic and chimeric, and whilst they all showed reduced growth compared with non-transformed control plants, they also had reduced susceptibility to P. viticola. Comparison between mock-inoculated genotypes showed that all edited lines presented higher levels of salicylic acid than controls, and lines subjected to transformation presented higher levels of cis-resveratrol than controls. Our results identify VvDMR6-1 as a promising target for breeding grapevine cultivars with improved resistance to downy mildew.


Asunto(s)
Oomicetos , Vitis , Resistencia a la Enfermedad/genética , Sistemas CRISPR-Cas , Fitomejoramiento , Vitis/genética , Enfermedades de las Plantas
2.
Plant Phenomics ; 5: 0116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026470

RESUMEN

The strong societal demand to reduce pesticide use and adaptation to climate change challenges the capacities of phenotyping new varieties in the vineyard. High-throughput phenotyping is a way to obtain meaningful and reliable information on hundreds of genotypes in a limited period. We evaluated traits related to growth in 209 genotypes from an interspecific grapevine biparental cross, between IJ119, a local genitor, and Divona, both in summer and in winter, using several methods: fresh pruning wood weight, exposed leaf area calculated from digital images, leaf chlorophyll concentration, and LiDAR-derived apparent volumes. Using high-density genetic information obtained by the genotyping by sequencing technology (GBS), we detected 6 regions of the grapevine genome [quantitative trait loci (QTL)] associated with the variations of the traits in the progeny. The detection of statistically significant QTLs, as well as correlations (R2) with traditional methods above 0.46, shows that LiDAR technology is effective in characterizing the growth features of the grapevine. Heritabilities calculated with LiDAR-derived total canopy and pruning wood volumes were high, above 0.66, and stable between growing seasons. These variables provided genetic models explaining up to 47% of the phenotypic variance, which were better than models obtained with the exposed leaf area estimated from images and the destructive pruning weight measurements. Our results highlight the relevance of LiDAR-derived traits for characterizing genetically induced differences in grapevine growth and open new perspectives for high-throughput phenotyping of grapevines in the vineyard.

3.
BMC Plant Biol ; 21(1): 528, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34763660

RESUMEN

BACKGROUND: Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS: The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS: The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.


Asunto(s)
Resistencia a la Enfermedad/genética , Erysiphe/fisiología , Genes de Plantas , Enfermedades de las Plantas/genética , Vitis/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Ligamiento Genético , Técnicas de Genotipaje , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Vitis/microbiología
4.
BMC Plant Biol ; 21(1): 487, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696712

RESUMEN

BACKGROUND: Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS: A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS: The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.


Asunto(s)
Empalme Alternativo , Frutas/crecimiento & desarrollo , Frutas/genética , Genotipo , Fenotipo , Vitis/crecimiento & desarrollo , Vitis/genética , Cambio Climático , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Fitomejoramiento/métodos
5.
Commun Biol ; 4(1): 637, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050254

RESUMEN

Grapevine fanleaf disease, caused by grapevine fanleaf virus (GFLV), transmitted by the soil-borne nematode Xiphinema index, provokes severe symptoms and economic losses, threatening vineyards worldwide. As no effective solution exists so far to control grapevine fanleaf disease in an environmentally friendly way, we investigated the presence of resistance to GFLV in grapevine genetic resources. We discovered that the Riesling variety displays resistance to GFLV, although it is susceptible to X. index. This resistance is determined by a single recessive factor located on grapevine chromosome 1, which we have named rgflv1. The discovery of rgflv1 paves the way for the first effective and environmentally friendly solution to control grapevine fanleaf disease through the development of new GFLV-resistant grapevine rootstocks, which was hitherto an unthinkable prospect. Moreover, rgflv1 is putatively distinct from the virus susceptibility factors already described in plants.


Asunto(s)
Resistencia a la Enfermedad/genética , Nepovirus/patogenicidad , Vitis/genética , Agricultura/métodos , Animales , Genotipo , Nematodos/virología , Nepovirus/genética , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Vitis/metabolismo , Vitis/microbiología
6.
Mol Ecol ; 30(10): 2333-2348, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33710711

RESUMEN

Geographical distribution and diversity of current plant species have been strongly shaped by climatic oscillations during the Quaternary. Analysing the resulting divergence among species and differentiation within species is crucial to understand the evolution of taxa like the Vitis genus, which provides very useful genetic resources for grapevine improvement and might reveal original recolonization patterns due to growth habit and dispersal mode. Here, we studied the genetic structure in natural populations of three species from eastern North America: Vitis aestivalis, V. cinerea and V. riparia using different marker types. Vitis aestivalis and V. cinerea showed higher diversity than V. riparia. The two former species are less differentiated, confirming an earlier divergence of V. riparia. V. aestivalis and V. riparia exhibited different genetic groups on both sides of the Appalachian Mountains that could mirror different recolonization routes from southern refugia. Genetic structure was stronger in V. cinerea, for which two varieties (var. berlandieri and var. cinerea) are morphologically recognized. Our results confirm this distinction and suggest the existence of three other lineages within var. cinerea. These discontinuities appear linked to adaptation of var. berlandieri to dry and limy areas of Texas and partially to the Mississippi River Valley. Rapid range expansions from refugia upon climate warming are also suggested by the low linkage disequilibrium values observed. Furthermore, large variation for downy mildew resistance was observed in the three species. Our findings appeared consistent with the vegetation history of eastern North America.


Asunto(s)
Oomicetos , Vitis , Variación Genética , Filogenia , Filogeografía , Texas , Vitis/genética
7.
Genes (Basel) ; 11(3)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245073

RESUMEN

Although there are a number of bioinformatic tools to identify plant nucleotide-binding leucine-rich repeat (NLR) disease resistance genes based on conserved protein sequences, only a few of these tools have attempted to identify disease resistance genes that have not been annotated in the genome. The overall goal of the NLGenomeSweeper pipeline is to annotate NLR disease resistance genes, including RPW8, in the genome assembly with high specificity and a focus on complete functional genes. This is based on the identification of the complete NB-ARC domain, the most conserved domain of NLR genes, using the BLAST suite. In this way, the tool has a high specificity for complete genes and relatively intact pseudogenes. The tool returns all candidate NLR gene locations as well as InterProScan ORF and domain annotations for manual curation of the gene structure.


Asunto(s)
Genómica/métodos , Proteínas NLR/genética , Proteínas de Plantas/genética , Análisis de Secuencia de Proteína/métodos , Programas Informáticos/normas , Arabidopsis , Secuencia Conservada , Resistencia a la Enfermedad , Genómica/normas , Helianthus , Proteínas NLR/química , Proteínas de Plantas/química , Unión Proteica , Dominios Proteicos , Análisis de Secuencia de Proteína/normas
8.
Theor Appl Genet ; 133(3): 993-1008, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31932953

RESUMEN

KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.


Asunto(s)
Ácidos/metabolismo , Frutas/genética , Genes de Plantas , Potasio/metabolismo , Vitis/genética , Alelos , Mapeo Cromosómico , Cambio Climático , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Calor , Concentración de Iones de Hidrógeno , Malatos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Sitios de Carácter Cuantitativo
9.
Theor Appl Genet ; 132(4): 1073-1087, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30535509

RESUMEN

KEY MESSAGE: In grapevine interspecific hybrids, meiotic recombination is suppressed in homeologous regions and enhanced in homologous regions of recombined chromosomes, whereas crossover rate remains unchanged when chromosome pairs are entirely homeologous. Vitis rotundifolia, an American species related to the cultivated European grapevine Vitis vinifera, has a high level of resistance to several grapevine major diseases and is consequently a valuable resource for grape breeding. However, crosses between both species most often lead to very few poorly fertile hybrids. In this context, identifying genetic and genomic features that make cross-breeding between both species difficult is essential. To this end, three mapping populations were generated by pseudo-backcrosses using V. rotundifolia as the donor parent and several V. vinifera cultivars as the recurrent parents. Genotyping-by-sequencing was used to establish high-density genetic linkage maps and to determine the genetic composition of the chromosomes of each individual. A good collinearity of the SNP positions was observed between parental maps, confirming the synteny between both species, except on lower arm of chromosome 7. Interestingly, recombination rate in V. rotundifolia × V. vinifera interspecific hybrids depends on the length of the introgressed region. It is similar to grapevine for chromosome pairs entirely homeologous. Conversely, for chromosome pairs partly homeologous, recombination is suppressed in the homeologous regions, whereas it is enhanced in the homologous ones. This balance leads to the conservation of the total genetic length of each chromosome between V. vinifera and hybrid maps, whatever the backcross level and the proportion of homeologous region. Altogether, these results provide new insight to optimize the use of V. rotundifolia in grape breeding and, more generally, to improve the introgression of gene of interest from wild species related to crops.


Asunto(s)
Hibridación Genética , Recombinación Genética/genética , Vitis/genética , Alelos , Pintura Cromosómica , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Genoma de Planta , Técnicas de Genotipaje , Repeticiones de Minisatélite/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
10.
Front Plant Sci ; 9: 360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619037

RESUMEN

The Oomycete Plasmopara viticola is responsible for downy mildew, which is one of the most damaging grapevine diseases. Due to the strictly biotrophic way of life of P. viticola, its metabolome is relatively poorly characterized. In this work, we have used a mass spectrometry-based non-targeted metabolomic approach to identify potential Plasmopara-specific metabolites. This has led to the characterization and structural elucidation of compounds belonging to three families of atypical lipids, which are not detected in healthy grapevine tissues. These lipids include ceramides and derivatives of arachidonic and eicosapentaenoic acid, most of which had not been previously described in Oomycetes. Furthermore, we show that these lipids can be detected in Plasmopara-infected tissues at very early stages of the infection process, long before the appearance the first visible symptoms of the disease. Therefore, the potential use of these specific lipids as markers to monitor the development of P. viticola is discussed.

11.
Anal Chem ; 89(13): 7099-7106, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28570053

RESUMEN

Plant response to their environment stresses is a complex mechanism involving secondary metabolites. Stilbene phytoalexins, namely resveratrol, pterostilbene, piceids and viniferins play a key role in grapevine (Vitis vinifera) leaf defense. Despite their well-established qualities, conventional analyses such as HPLC-DAD or LC-MS lose valuable information on metabolite localization during the extraction process. To overcome this issue, a correlative analysis combining mass spectroscopy imaging (MSI) and fluorescence imaging was developed to localize in situ stilbenes on the same stressed grapevine leaves. High-resolution images of the stilbene fluorescence provided by macroscopy were supplemented by specific distributions and structural information concerning resveratrol, pterostilbene, and piceids obtained by MSI. The two imaging techniques led to consistent and complementary data on the stilbene spatial distribution for the two stresses addressed: UV-C irradiation and infection by Plasmopara viticola. Results emphasize that grapevine leaves react differently depending on the stress. A rather uniform synthesis of stilbenes is induced after UV-C irradiation, whereas a more localized synthesis of stilbenes in stomata guard cells and cell walls is induced by P. viticola infection. Finally, this combined imaging approach could be extended to map phytoalexins of various plant tissues with resolution approaching the cellular level.


Asunto(s)
Hojas de la Planta/química , Sesquiterpenos/análisis , Estilbenos/análisis , Vitis/química , Fluorescencia , Espectrometría de Masas/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Oomicetos , Hojas de la Planta/microbiología , Hojas de la Planta/efectos de la radiación , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Estilbenos/química , Estilbenos/metabolismo , Estrés Fisiológico/fisiología , Rayos Ultravioleta , Vitis/microbiología , Vitis/efectos de la radiación , Fitoalexinas
12.
Mol Plant Pathol ; 18(5): 708-719, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27216084

RESUMEN

Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis-related (PR) proteins. Endo-ß-1,3-glucanases (EGases) belong to the PR-2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti-P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR-2 family from Vitis.


Asunto(s)
Antiinfecciosos/farmacología , Oomicetos/patogenicidad , Proteínas de Plantas/farmacología , Vitis/enzimología , Antiinfecciosos/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas , Oomicetos/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
13.
Mol Genet Genomics ; 291(4): 1573-94, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27038830

RESUMEN

Grapevines (Vitis vinifera L.) form the basis of viticulture, and are susceptible to diseases such as downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator). Therefore, successful viticulture programs require the use of pesticides. Breeding for resistance is the only eco-friendly solution. Marker-assisted selection is currently widely used for grapevine breeding. Consequently, traits of interest must be tagged with molecular markers linked to quantitative trait loci (QTL). We herein present our findings regarding genetic mapping and QTL analysis of resistance to downy and powdery mildew diseases in the progenies of the GF.GA-47-42 ('Bacchus' × 'Seyval') × 'Villard blanc' cross. Simple sequence repeats and single nucleotide polymorphisms of 151 individuals were analyzed. A map consisting of 543 loci was screened for QTL analyses based on phenotypic variations observed in plants grown in the field or under controlled conditions. A major QTL for downy mildew resistance was detected on chromosome 18. For powdery mildew resistance, a QTL was identified on chromosome 15. This QTL was replaced by a novel QTL on chromosome 18 in 2003 (abnormally high temperatures) and 2004. Subsequently, both QTLs functioned together. Additionally, variations in the timing of the onset of veraison, which is a crucial step during grape ripening, were studied to identify genomic regions affecting this trait. A major QTL was detected on linkage group 16, which was supplemented by a minor QTL on linkage group 18. This study provides useful information regarding novel QTL-linked markers relevant for the breeding of disease-resistant grapevines adapted to current climatic conditions.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Vitis/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Ligamiento Genético , Repeticiones de Microsatélite , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Vitis/genética , Vitis/microbiología
14.
PLoS Genet ; 11(4): e1005081, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25835388

RESUMEN

Clonal polymorphism mainly results from somatic mutations that occur naturally during plant growth. In grapevine, arrays of clones have been selected within varieties as a valuable source of diversity, among them clones showing berry color polymorphism. To identify mutations responsible for this color polymorphism, we studied a collection of 33 clones of Pinot noir, Pinot gris, and Pinot blanc. Haplotypes of the L2 cell layer of nine clones were resolved by genotyping self-progenies with molecular markers along a 10.07 Mb region of chromosome 2, including the color locus. We demonstrated that at least six haplotypes could account for the loss of anthocyanin biosynthesis. Four of them resulted from the replacement of sections of the 'colored' haplotype, sized from 31 kb to 4.4 Mb, by the homologous sections of the 'white' haplotype mutated at the color locus. This transfer of information between the two homologous sequences resulted in the partial homozygosity of chromosome 2, associated in one case with a large deletion of 108 kb-long. Moreover, we showed that, in most cases, somatic mutations do not affect the whole plant; instead, they affect only one cell layer, leading to periclinal chimeras associating two genotypes. Analysis of bud sports of Pinot gris support the hypothesis that cell layer rearrangements in the chimera lead to the homogenization of the genotype in the whole plant. Our findings shed new light on the way molecular and cellular mechanisms shape the grapevine genotypes during vegetative propagation, and enable us to propose a scheme of evolutionary mechanism of the Pinot clones.


Asunto(s)
Deleción Cromosómica , Cromosomas de las Plantas/genética , Evolución Clonal , Pigmentación/genética , Polimorfismo Genético , Vitis/genética , Frutas/metabolismo , Vitis/metabolismo
15.
Protein Expr Purif ; 109: 29-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25655203

RESUMEN

A frequent problem of recombinant protein production is their insolubility. To address this issue, engineered Escherichiacoli strains like Arctic Express that produce an exogenous chaperone facilitating protein folding, have been designed. A drawback is the frequent contamination of the protein by chaperones. A simple method, using urea at a sub-denaturing concentration, allows unbinding of Cpn60 from expressed protein. This method was successfully used to purify 2 proteins, an enzyme and a viral protein. The enzyme was fully active. The nature of interaction forces between enzyme and Cpn60 was investigated. The method is likely applicable to purify other proteins.


Asunto(s)
Bioquímica/métodos , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Ingeniería Genética , Proteínas Recombinantes/metabolismo , Dispersión Dinámica de Luz , Electroforesis en Gel de Poliacrilamida , Cinética
16.
J Exp Bot ; 65(22): 6589-601, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25246444

RESUMEN

During plant development, sugar export is determinant in multiple processes such as nectar production, pollen development and long-distance sucrose transport. The plant SWEET family of sugar transporters is a recently identified protein family of sugar uniporters. In rice, SWEET transporters are the target of extracellular bacteria, which have evolved sophisticated mechanisms to modify their expression and acquire sugars to sustain their growth. Here we report the characterization of the SWEET family of sugar transporters in Vitis vinifera. We identified 17 SWEET genes in the V. vinifera 40024 genome and show that they are differentially expressed in vegetative and reproductive organs. Inoculation with the biotrophic pathogens Erysiphe necator and Plasmopara viticola did not result in significant induction of VvSWEET gene expression. However, infection with the necrotroph Botrytis cinerea triggered a strong up-regulation of VvSWEET4 expression. Further characterization of VvSWEET4 revealed that it is a glucose transporter localized in the plasma membrane that is up-regulated by inducers of reactive oxygen species and virulence factors from necrotizing pathogens. Finally, Arabidopsis knockout mutants in the orthologous AtSWEET4 were found to be less susceptible to B. cinerea. We propose that stimulation of expression of a developmentally regulated glucose uniporter by reactive oxygen species production and extensive cell death after necrotrophic fungal infection could facilitate sugar acquisition from plant cells by the pathogen.


Asunto(s)
Botrytis/fisiología , Interacciones Huésped-Patógeno , Proteínas de Transporte de Membrana/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/microbiología , Botrytis/patogenicidad , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes de Plantas , Prueba de Complementación Genética , Glucosa/metabolismo , Interacciones Huésped-Patógeno/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Especificidad de Órganos/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Virulencia , Vitis/metabolismo
17.
Molecules ; 19(7): 10587-600, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25050857

RESUMEN

To investigate the in-situ response to a stress, grapevine leaves have been subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the most efficient matrix allowing a broader range of detected stilbene phytoalexins. Resveratrol, but also more toxic compounds against fungi such as pterostilbene and viniferins, were identified and mapped. Their spatial distributions on grapevine leaves irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI reveals that resveratrol (and piceids) and viniferins are not specifically located on the same area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass spectrometry imaging demonstrate that this technique would be essential to improve the level of knowledge concerning the role of the stilbene phytoalexins involved in a stress event.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estilbenos/metabolismo , Vitis/metabolismo , Oomicetos/microbiología , Hojas de la Planta/microbiología , Resveratrol , Vitis/microbiología
18.
Anal Chim Acta ; 795: 44-51, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23998536

RESUMEN

Grapevine is of worldwide economic importance due to wine production. However, this culture is often affected by pathogens causing severe harvest losses. Understanding host-pathogen relationships may be a key to solve this problem. In this paper, we evaluate the direct flow injection by electrospray - Fourier transform ion cyclotron resonance mass spectrometry (MS) of leaf extracts as a rapid method for the study of grapevine response to downy mildew (Plasmopara viticola) attack. The comparison of MS profiles obtained from control and infected leaves of different levels of resistant grapevines highlights several classes of metabolites (mainly saccharides, acyl lipids, hydroxycinnamic acids derivatives and flavonoids) which are identified using high resolution MS and tandem MS (MS/MS). Statistical analyses of 19 markers show a clear segregation between inoculated and healthy samples. This study points out relative high levels of disaccharides, acyl lipids and glycerophosphoinositol in inoculated samples. Sulfoquinovosyl diacylglycerols also emerge as possible metabolites involved in plant defense.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Vitis/metabolismo , Glucolípidos/química , Iones/química , Peronospora/aislamiento & purificación , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Análisis de Componente Principal , Vitis/microbiología
19.
Plant J ; 76(4): 661-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24033846

RESUMEN

The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR-NB-LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated resistance to Uncinula necator (MrRUN1) and resistance to Plasmopara viticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south-eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1-mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR-NB-LRR genes at this locus share a common ancestor.


Asunto(s)
Ascomicetos/inmunología , Genes de Plantas , Oomicetos/inmunología , Proteínas de Plantas/genética , Vitaceae/genética , Empalme Alternativo/genética , Ascomicetos/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Oomicetos/genética , Inmunidad de la Planta/genética , Vitaceae/inmunología , Vitaceae/microbiología
20.
Theor Appl Genet ; 125(8): 1663-75, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22865124

RESUMEN

Muscadinia rotundifolia, a species closely related to cultivated grapevine Vitis vinifera, is a major source of resistance to grapevine downy and powdery mildew, two major threats to cultivated traditional cultivars of V. vinifera respectively caused by the oomycete Plasmopara viticola and the ascomycete Erisyphe necator. The aim of the present work was to develop a reference genetic linkage map based on simple sequence repeat (SSR) markers for M. rotundifolia. This map was created using S1 M. rotundifolia cv. Regale progeny, and covers 948 cM on 20 linkage groups, which corresponds to the expected chromosome number for muscadine. The comparison of the genetic maps of V. vinifera and M. rotundifolia revealed a high macrosynteny between the genomes of both species. The S1 progeny was used to assess the general level of resistance of M. rotundifolia to P. viticola and E. necator, by scoring different parameters of pathogen development. A quantitative trait locus (QTL) analysis allowed us to highlight a major QTL on linkage group 14 controlling resistance to powdery mildew, which explained up to 58 % of the total phenotypic variance. This QTL was named 'Resistance to Erysiphe Necator 5' (Ren5). A microscopic evaluation E. necator mycelium development on resistant and susceptible genotypes of the S1 progeny showed that Ren5 exerts its action after the formation of the first appressorium, and acts by delaying, and then stopping, mycelium development.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Sitios Genéticos/genética , Enfermedades de las Plantas/inmunología , Vitis/genética , Vitis/microbiología , Ascomicetos/ultraestructura , Ligamiento Genético , Genoma de Planta/genética , Genotipo , Micelio/crecimiento & desarrollo , Micelio/ultraestructura , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Estándares de Referencia , Sintenía/genética , Vitis/inmunología , Vitis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...